
Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 04 November 2022
Accepted: 10 May 2023
Published: 06 November 2023

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.32.1.02

E-mail addresses:
sushamsiah@unimas.my (Shamsiah Suhaili)
jnorhuza@unimas.my (Norhuzaimin Julai)
srohana@unimas.my (Rohana Sapawi)
rnordiana@unimas.my (Nordiana Rajaee)
* Corresponding author

Towards Maximising Hardware Resources and Design
Efficiency via High-Speed Implementation of HMAC based on
SHA-256 Design

Shamsiah Suhaili*, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee
Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Malaysia Sarawak,
94300 UNIMAS, Kota Samarahan, Sarawak, Malaysia

ABSTRACT

Some applications, such as Message Authentication Code (MAC), rely on different hashing
operations. There are various hash functions, including Message-Digest 5 (MD5), RACE
Integrity Primitives Evaluation Message Digest 160 (RIPEMD-160), Secure Hash Algorithm
1 (SHA-1), and Secure Hash Algorithm 256 (SHA-256), among others. The network layer is
the third of seven layers of the Open Systems Interconnection (OSI) concept, also known as
the Internet. It handles network addressing and physical data routing. Nowadays, enhanced
internet security is necessary to safeguard networks from illegal surveillance. As a result,
Internet Protocol Security (IPsec) introduces secure communication across the Internet by
encrypting and/or authenticating network traffic at the IP level. IPsec is an internet-based
security protocol. Encapsulating Security Payload (ESP) and Authentication Header (AH)
protocols are separated into two protocols. The MAC value is stored in the authentication
data files of the Authentication Header and Encapsulating Security Payload. This article
analyses a fast implementation of the Hash-based Message Authentication Code (HMAC),
which uses its algorithm to ensure the validity and integrity of data to optimise hardware
efficiency and design efficacy using the SHA-256 algorithm. During data transfer, HMAC

is critical for message authentication. It
was successfully developed using Verilog
Hardware Description Language (HDL)
code with the implementation of a Field
Programmable Gate Array (FPGA) device
using the Altera Quartus II Computer-Aided
Design (CAD) tool to enhance the maximum
frequency of the design. The accuracy of the
HMAC design, which is based on the SHA-
256 design, was examined and confirmed

32 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

using ModelSim. The results indicate that the maximum frequency of the HMAC-SHA-256
design is approximately 195.16 MHz.

Keywords: Field Programmable Gate Array, hash function, Hash-based Message Authentication Code, Secure
Hash Algorithm 256, Verilog Hardware Description Language

INTRODUCTION

There are seven layers, and the internet layer is the network layer in which data transfer from
one terminal to another depends on the address and routing network. Traffic networks are
prone to eavesdropping and illegal access without a network-integrated security element.
However, selecting a suitable encryption and authentication product for the network can
solve this problem. The internet community created the Security Protocol (Randall, 1999).
The third network layer of the seven-layer OSI architecture employs the IPsec protocol.
The seven layers are divided into application, presentation, session, transport, network, data
link, and physical layers. One of the network encryption protocols is IPsec (IP Security),
the most recent IP-based technology.

The IP provides network authentication and encryption to protect the network from
illegal surveillance. Because of its improved capabilities, IP Security has become a fact
of life in terms of network security for Internet Protocol version 4 (IPv4) and Internet
Protocol version 6 (IPv6). The IPsec is divided into two protocols: Authentication Header
(AH), which examines IP packet authentication and data integrity, and Encapsulating
Security Payload (ESP), which encrypts and authenticates the message. Both AH and
ESP are equipped with two different modes: tunnel mode and transit mode; as a whole,
the IP packet is encrypted in tunnel mode, while only the transport layer is encrypted in
the latter. On the other hand, HMAC-MD5, HMAC-SHA, and HMAC-RIPEMD160 are
authentication and data integrity methods. These methods may be used to safeguard all
distributed applications, e-mail, file transfers, and web access.

This article focuses on computing the Hash-based Message Authentication
Code (HMAC) using the MAC (Message Authentication Code) algorithm. Message
Authentication Code (MAC) is used to verify the validity of a message, while HMAC
is a subset of MAC that uses a cryptographic hash function and a private key for
verification. It accepts arbitrary input with a specified key and produces MAC output.
The authentication data element in the AH header contains this MAC value. Network
transmission operations are followed using the same key to obtain the same MAC at the
destination. The message is valid if the MAC value received at the destination corresponds
to the one broadcasted. Similar to AH, ESP enables the use of MAC with HMAC. The
encryption procedure takes place before the IP layer, which is at the IPsec layer when the
application sends the message across the network. A message is routed via the network
to its destination using an IP address, part of an IP layer. The router will then determine

33Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Implementation of Error-free HMAC-SHA-256 at High Speed

the destination address based on the sender’s IP address. The decryption of the packet
is required to access the sent data.

Security has recently emerged as a hot topic among researchers. Various cryptography
algorithms have been developed to enhance the effectiveness of these information-
protecting processes. Message digests are generated using hash function techniques during
data transmission. As a result, it becomes a crucial tool for embedding security in e-mail,
Internet banking, and other applications. A hash function generates a fixed-length output
from an arbitrary-length message input. The one-way nature of hash functions makes
converting a hash value to a message input challenging. A hash function is a cryptography
technique that does not require a key, such as MD5, RIPEMD160, or SHA-1. In this study,
an SHA family was constructed and tailored to meet the performance requirements for
cryptographic algorithms. There are four types of hash functions in SHA-2, which are
SHA-224, SHA-256, SHA-384, and SHA-512. The length of SHA determines the output
length of these hash algorithms, ranging from 256 to 512 bits. This article presents the
design of the SHA-256 hash function.

This study optimises hardware resources and performance by utilising the hash function
of SHA-256 with a Message Authentication Code. Meanwhile, IPsec and HMAC-SHA-256
are focused on several related projects to optimise hardware size, performance, and
consumption. McLoone and McCanny (2002) presented IPsec hardware on a single chip
that included Rijndael and HMAC-SHA-256. The wireless design raises the maximum
frequency, as shown in a previous study (Selimis et al., 2003). On the other hand, the
HMAC with SHA-1/MD5 was initially presented in earlier research (Wang et al., 2004),
where hardware complexity was minimised, and an efficient hash function structure was
devised to share hardware. Additionally, Michail et al. (2004) demonstrated the HMAC-
SHA-1 implementation on an FPGA device, whereas Yiakoumis et al. (2005) showed the
execution of a small-sized, high-speed HMAC-SHA-1.

Improvement methods adopted by Khan et al. (2007) used pipelining and parallelism
to create the HMAC-hash unit and combine them into a single reconfigurable unit. Even
though these ideas worked well, the greatest frequencies they could reach were only a
few tens of MHz, or up to 111 MHz, as presented in research by Yiakoumis et al. (2005).
Meanwhile, an FPGA implementation of HMAC based on SHA-256 was designed in
previous studies by Juliato and Gebotys (2011) and Rubayya and Resmi (2015). The results
were obtained using a Xilinx device in both designs. Furthermore, the HMAC design in
Rubayya and Resmi (2015) demonstrated significant improvement. It suggests that greater
performance is needed to meet the demands of current systems.

Table 1 shows the previous design of HMAC with various types of hash functions, such
as SHA-1, MD5, and RIPEMD-160. Numerous studies have been conducted on HMAC, but
not all of them have focused on the frequency maximum of FPGA design implementation
(Choi & Seo, 2020; Oku et al., 2018; Lin et al., 2017; Ravilla & Putta, 2015a; Ravilla &

34 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

Table 1
Previous HMAC design

No. Author FPGA Device HMAC Design
Frequency
Maximum
(MHz)

1 McLoone and McCanny (2002) Xilinx XCV1000E HMAC (SHA-1) 50
2 Selimis et al. (2003) V150bg352 HMAC (SHA-1) 82
3 Wang et al. (2004) EP2OKIOOOEBC652-IX HMAC (SHA-1/MD5) 22.67
4 Michail et al. (2004) Xilinx V3200efg1156 HMAC (SHA-1) 62.0
5 Yiakoumis et al. (2005) Xilinx VirtexE-8 HMAC (MD5)

HMAC (SHA-1)
55
111

6 Khan et al. (2007) Xilinx XC2V4000 HMAC (MD5, SHA-1,
RIPEMD-160)

43.47

8 Juliato and Gebotys (2011) Altera Apex 20K,
EP20K1000EBC652

HMAC (SHA-256) 35.55

Juliato and Gebotys (2011) Xilinx Virtex-E,
XCV1600EBG1156

HMAC (SHA-256) 48.12

Juliato and Gebotys (2011) Xilinx Virtex-II,
XCV2V4000BF957

HMAC (SHA-256) 59.66

9 Rubayya and Resmi (2015) Xilinx Device (no mention
device name)

HMAC (SHA-256) 110.009

10 Ravilla and Putta (2015a,
2015b)

No FPGA implementation HMAC (SHA-256) -

11 Choi and Seo (2020) No FPGA implementation HMAC (SHA-256) -
12 Chen and Yuan (2012) No FPGA implementation HMAC (SHA-256) -
13 Lin et al. (2017) No FPGA implementation HMAC (SHA-256) -

14 Oku et al. (2018) No FPGA implementation HMAC (SHA-256) -

15 Jung and Jung (2013) No FPGA implementation HMAC-based RFID
mutual authentication

-

16 Kieu-Do-Nguyen et al. (2022) Virtex 4/virtex 5 HMAC-SHA-256 188
17 Pham et al. (2022) Virtex2 XC2VP20 SHA-256 165

Putta, 2015b; Jung & Jung, 2013). The reference study by Kieu-Do-Nguyen et al. (2022)
combined all SHA-2 families into one core, such as HMAC-SHA2-224/256/384/512,
whereas Pham et al. (2022) designed only the combination of SHA-256/512/256d hash
function. This article focuses on SHA-256 because of its wide implementation in security
design implementations, such as Bitcoin, also known as cryptocurrency.

MATERIALS AND METHODS

Message authentication is the process of verifying the authenticity of messages, where
two important factors must be considered in verifying the authenticity of a message, such

35Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Implementation of Error-free HMAC-SHA-256 at High Speed

as a source and that the message has not been altered. The traditional encryption method
authentication takes place when the sender and the receiver possess the same key throughout
the transmission process (Stallings, 1996). In other words, only the genuine user has the
key to decrypt the message. Figure 1 shows the block design for the complete message
authentication process, which contains a secret key to generate data into the algorithm.
The sender receives this message and its MAC; once the MAC has been compared to the
MAC at the receiver, the receiver must determine whether it has received the same MAC
using the same secret key. The message has not been changed and is deemed authentic if
the output MAC matches the one transmitted.

Figure 1. Message authentication using HMAC

HMAC

HMAC

HMAC
algorithm

Message

Key

Message

One application that uses the hash function to verify message authentication is HMAC.
An HMAC based on SHA-256 was implemented in this study. The input key is first hashed
before any input text using HMAC. The input key is generated by XORing the inner pad
(Ipad) with the input text. An inner pad value is 36 hexadecimal values with a 64-byte
timeout, depending on the length of the key. The output of this SHA-256 hash function
will be fed into the next SHA-256 to produce the HMAC design output. Before hashing
the first SHA-256 output, the key inputs must be XORed with the outer pad (Opad), which
has 5C values in hexadecimal (FIPS PUB 198-1, 2008; FIPS PUB 180-4, 2015). The
concatenation of the 64-byte key, K0, and Opad outputs, as well as the output of the first
SHA-256, will then be hashed together to produce the HMAC output. Equation 1 shows
an MAC calculated with the HMAC function over a textual representation of the data,
while Figure 2 depicts the HMAC structure using SHA-256. The symbols ⊕ and || stand
for XOR and concatenation, respectively.

MAC(Message input)t = HMAC(K, Message input)t

H((K0 ⊕ Opad) || H((K0 ⊕ Ipad) || Message input))t [1]

Message Authentication Code is one of the applications of the hash function. Figure 2
depicts the high-level implementation of the HMAC design, comprising an input pad (Ipad)
with a fixed 36 hexadecimal value and an output pad (Opad) with a fixed 5C hexadecimal

36 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

value. The values from the Ipad are sent into the initial SHA-256 design. The counter then
causes the HMAC count to generate the output of the first SHA-256 to the second SHA-256
to obtain the overall HMAC output. HMAC is an abbreviation for Hash-based Message
Authentication Code, a cryptographic authentication technique that uses a hash function
and a secret key. Two identical hash function architectures are used in the HMAC design
to obtain the HMAC results. Meanwhile, two hash functions must be used in the HMAC
architecture to complete the HMAC structure. In this study, SHA-256 algorithms were
employed in the HMAC design. Figure 3 depicts the architecture of an HMAC design with
two SHA-256 hash algorithms.

Moreover, Figure 3 illustrates how the key Ipad input message was integrated with
the text input. These values will be used as the SHA-256 hash function’s input message.
There will be two instances of 512-bit blocks if the initialisation value and message input
are used. The state machine controls the first and second SHA-256 input in the proposed
design. As a result, the first SHA-256 must be executed first, and the second SHA-256
must wait for the message input from the output of the first SHA-256 design, as shown
in Figure 3. HMAC uses two hash functions to operate. Two SHA-256 hash functions are
employed in HMAC design. The initial SHA-256 algorithm must be executed until results
are achieved. These findings serve as the input for the second SHA-256 algorithm with
message input. Figure 3 depicts the concatenation of a key with input from an Ipad and
SHA-256 with input from a message. Therefore, the validity of the results of initial SHA-
256 remains crucial in acquiring the final HMAC based on SHA-256.

The 64 states in this design have generated the sequence input for the first and second
SHA-256 algorithms. Thirty-two states were executed: 16 for the first 512 bits and another

Figure 2. Illustration of HMAC construction

K0

K0 XOR Ipad

Message input

Hash Function ((K0 XOR Ipad) || Message input text)K0 XOR Opad

Hash Function ((K0 XOR Ipad) || Message input text)

K0 XOR Ipad

K0 XOR Ipad

Hash Function ((K0 XOR Opad) || Hash Function ((K0 XOR Ipad) || Message input))

37Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Implementation of Error-free HMAC-SHA-256 at High Speed

16 for the second 512 bits SHA-256 to process the message for the first SHA-256. The
message will use the output of the first 512-bit hash function to obtain the output of the
second 512-bit loop of the input message. An HMAC count is used to generate the correct
output SHA-256 hash function with the help of a counter. Input Ipad is the same concept
as message input to the second SHA-256. The key Opad output will be combined with
the first SHA-256 output. There will be two 512-bit blocks. The state begins at 33 and
progresses to 48 for the first 512 bits. The remaining 512 bits will then be executed until
64 states are reached. Similar to the previous SHA-256 process, the output of the second
512-bit block of the second SHA-256 will use the output of the first 512 bits of the second
hash function. Finally, this will produce the resulting output obtained in this study.

Secure Hash Functions authenticate messages; therefore, it is necessary to comply
with the hash function requirement. A hash function must possess certain properties.
Some of these properties include generating outputs of fixed length and the computational
infeasibility of determining an x such that Hash(x) equals hash value. It is true for any given
code h. It is easy to calculate the hash code, but it is impossible to recover the original
message by reversing it. In addition, it is computationally impossible to determine y≠x for
any given block x for which Hash(x) = Hash(y). In other words, identical hash codes are
impossible to find, and all these characteristics constitute weak hash functions. Additionally,

Figure 3. Implementation of proposed HMAC-SHA-256

clk rst

counter hash HMAC_count

KeyOpad || Output 1st SHA-256 (1024 bits)

HMAC output

SHA-256 Design

OpadIpad

Initialisation value

KeyIpad

KeyIpad || Message Text (1024 bits)

SHA-256 Design

key

Output 1st SHA-256

Initialisation value

Message Text KeyOpad

38 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

no pair (x, y) can be found for which Hash(x) = hash value, computationally, (y). If the
last property of the hash function criteria is met, the function is considered “strong.” Any
message less than 264 bits in length can be entered into the SHA-256 algorithm. SHA-256
processes 512-bit message inputs and 160-bit initial values to produce a 160-bit hash code
output. Figure 4 depicts the 512-bit message input of the SHA-256 hash function.

Figure 4. 512-bit message input of SHA-256

1024 bits
64 bits

Message input 1000…0 Length of the message input

Several considerations must be made to
generate output. The message must first be
padded to almost exactly match 960 modulo
1024. Figure 4 shows a 1-bit input following
the input message. It is then padded with
0 bits to produce the total length of the
message. After the message is padded,
64-bit inputs are added to the message.
Message padding consists of 512 bits and
the message’s total length. HMAC-based
SHA-256 uses the SHA-256 approach to

Table 2
Buffer initialisation of SHA-256

Register Buffer Initialisation (Hex)
A 32'h6a09e667
B 32'hbb67ae85
C 32'h3c6ef372
D 32'ha54ff53a
E 32'h510e527f
F 32'h9b05688c
G 32'h1f83d9ab
H 32'h5be0cd19

determine authentication in this design. In other words, the SHA-256 hash algorithm was
utilised to construct HMAC. Based on the SHA-256 algorithm, the SHA-256 architecture
has eight fixed inputs. Hence, the SHA-256 algorithm requires eight variables as initial
input during hash computation. Table 2 displays the hexadecimal buffer initialisation of the
SHA-256 hash function. Eight distinct input buffer initialisations exist; they are used during
the first phase of execution, and their values are fixed for all SHA-256 hash functions. After
the startup operation, the input message is processed in 1024-bit blocks of 32 bits each.
Figure 5 displays the 64 highest-level steps of the SHA-256 message compression process.

The input message is padded during an early step of the SHA-256 hash process. Padding
the message begins once the input for the message is received, and the message is completed
by appending a single one-bit. Next, n zero bits will be added, and this pattern will continue
until the total number of bits in the message equals 448 modulo 512. The final 64 bits are
set aside specifically for use in relation to the calculation of how long the message should
be. The message input capacity is 512 bits. The message scheduler computes the message,
Wt of SHA-256. For 0 ≤ t ≤ 15, a message is extracted directly from the input message,

39Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Implementation of Error-free HMAC-SHA-256 at High Speed

whereas for 16 ≤ t ≤ 63, a message Wt is calculated using Equation 2. The value t denotes
the number of transformation rounds. ROTRn (x) is a right rotation of x by n bits, whereas
SHRn (x) is a right shift of x by n bits, as shown in Equations 3 and 4.

Message schedule SHA-256, Wt

Wt = message input 150 ≤≤ t

1615
256
072

256
1)()(−−−− +++= ttttt WWWWW σσ 6316 ≤≤ t [2]

where,

)()()()(3187256
0 xSHRxROTRxROTRx ++=σ [3]

)()()()(101917256
1 xSHRxROTRxROTRx ++=σ [4]

The SHA-256 compression function is made up of four functions that round from t
= 0 to t = 63. The four functions are Ch(x,y,z), Maj(x,y,z), ∑0)(),,,(),,,(xzyxMajzyxCh and ∑1)(x , as shown in
Equations 5, 6, 7 and 8. The symbols ¬∧, and⊕ represent the logical AND gate, NOT
gate, and XOR gate, respectively.

() ()gefegfeCh ∧¬⊕∧=),,([5]

Figure 5. Top level of SHA-256 design

SHA-256 Output value

Counter SHA-
256

unit1
Message
Schedule

unit2

Constant
SHA-256

unit3

mux
SHA256

unit4

Compression
Function

unit5

Output
SHA256

unit6

clk

rst

Data_in

sel

Ai....Hi

Ao....Ho

40 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

() ())(),,(cbcabacbaMaj ∧⊕∧⊕∧= [6]

)()()()(22132
0

aROTRaROTRaROTRa ++=∑ [7]

)()()()(25116
1

eROTReROTReROTRe ++=∑ [8]

The hash computation was used to construct eight variables with initial values to
evaluate the four functions of Equations 5, 6, 7 and 8. The message input, Wt, and constant
Kt form the 64 iterative operations. The output of the following Equations 9, 10 and 11 is
the output of hash values.

∑ ++++=
11),,()(tt WKgfeChehTemp [9]

∑ +=
02),,()(cbaMajaTemp [10]

21

1

TempTempa
ab
bc
cd

Tempde
ef
fg
gh

+=
=
=
=

+=
=
=
=

 [11]

After 64 iterations, the modulo-32-bit adders calculate the hash values, H0 to H7. The
SHA-256 hash value in its final form is generated using the Big-endian format.

33221100 ,,, HdHHcHHbHHaH +=+=+=+=

77665544 ,,, HhHHgHHfHHeH +=+=+=+=

Message Digest = 76543210 |||||||||||||| HHHHHHHH=

RESULTS AND DISCUSSION

Figure 6 shows the timing simulation waveform result of the HMAC-SHA-256 design
with the message input text “Sample #1”. HashCalc validated the HMAC values to ensure
output accuracy. Based on the simulation waveform results, the output of the HMAC
value provides the correct result of the HMAC value without error, which is similar to
the calculation from HashCalc software, as shown in Figure 7. FMax is the maximum

41Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Implementation of Error-free HMAC-SHA-256 at High Speed

clock frequency of HMAC-SHA-256 that a
digital design can operate at, and it improves
greatly when a clock constraint is applied to
the design. Figure 8 depicts the maximum
clock frequency of HMAC-SHA-256 with
SDC 5.3 clock limitations.

Table 3 displays the proposed HMAC-
SHA-256 design and other publications
utilising HMAC on various FPGA family
devices. HMAC-SHA-256 was successfully
designed using Altera Quartus II 15.0.
ModelSim-Altera 10.3d was used for
functional and timing simulation to validate

Figure 8. Maximum clock frequency (FMax) of HMAC-SHA-256

Figure 6. Simulation waveform of SHA-256 design

Figure 7. HMAC calculation value of SHA-256
design with specific key

42 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

the output results. The maximum frequency of the HMAC-SHA-256 design increases
dramatically on the Arria II GX with 3953 LUT and 2714 total registers, as shown in Table
3. Based on these findings, synthesis and implementation on Arria II GX give fast speed
with a maximum frequency of 195.16 MHz compared to other HMAC publications utilising
various hash functions on FPGA family device types. Furthermore, with the assistance
of Altera Quartus II and TimeQuest Timing Analyser advisors, HMAC-SHA-256 design
results are improved (https://www.altera.com/en_US/pdfs/literature/ug/ug_tq_tutorial.pdf).
By applying SDC clock constraint 5.3 to the HMAC-SHA-256 design on Arria II GX,
the maximum frequency of the design can be met under stable setup and hold conditions.
Thus, this study proposed a high-performance and error-free HMAC-SHA-256 design
with appropriate FPGA devices and clock constraints that meet the design requirement.

CONCLUSION

The design of HMAC-SHA-256 was successful through the use and development of
high-speed computing, which possessed a maximum frequency of 195.16 MHz. FPGA

Table 3
FPGA-based implementation comparison of the previous HMAC design

Authors/year FPGA Device Design
Maximum
Frequency

(MHz)

LUT/
CLB
/LE

Reg

Proposed Design Altera Arria II GX Proposed HMAC
(SHA-256)

195.16 3953 2714

Kieu-Do-Nguyen et
al. (2022)

Virtex 4/Virtex 5 HMAC (SHA-256) 188 1615 -

Pham et al. (2022) Virtex2 XC2VP20 SHA-256 165 3695 -
Rubayya and Resmi
(2015)

Xilinx Device (no mention
device name)

HMAC
(SHA-256)

110.009 6861 -

Juliato and Gebotys
(2011)

Altera Apex 20K,
EP20K1000EBC652

HMAC (SHA-256) 35.55 9231 -

Juliato and Gebotys
(2011)

Xilinx Virtex-E,
XCV1600EBG1156

HMAC (SHA-256) 48.12 3463 -

Juliato and Gebotys
(2011)

Xilinx Virtex-II,
XCV2V4000BF957

HMAC (SHA-256) 59.66 3608 -

Khan et al. (2007) Xilinx XC2V4000 HMAC (MD5, SHA-1,
RIPEMD-160)

43.47 7484 -

Yiakoumis et al.
(2005)

Xilinx VirtexE-8 HMAC (MD5)
HMAC (SHA-1)

55
111

686 -

Michail et al. (2004) Xilinx V3200efg1156 HMAC (SHA-1) 62.0 6011 -
Wang et al. (2004) EP2OKIOOOEBC652-IX HMAC (SHA-1/MD5) 22.67 - -
Selimis et al. (2003) V150bg352 HMAC (SHA-1) 82 1018 -
McLoone and
McCanny (2002)

Xilinx XCV1000E HMAC (SHA-1) 50 7247 -

43Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Implementation of Error-free HMAC-SHA-256 at High Speed

implementation on the Arria II GX can offer great speed. Moreover, the design can be
significantly enhanced with the assistance of advisor Altera Quartus II. Furthermore,
providing the design with the proper SDC clock constraints will allow the TimeQuest
timing analyser to meet the time requirements.

ACKNOWLEDGEMENTS

The author thanks the Ministry of Higher Education, Malaysia, Fundamental Research
Grant Scheme (FRGS/1/2020/TK0/UNIMAS/02/11), Universiti Malaysia Sarawak (F02/
FRGS/2035/2020) and Osaka Gas Foundation in Cultural Exchange (OGFICE) Research
Grant Scheme (IG/F02/OSAKA/01/2022) for supporting this work.

REFERENCES
Chen, F., & Yuan J. (2012). Enhanced key derivation function of HMAC-SHA-256 algorithm in LTE network.

In 2012 Fourth International Conference on Multimedia Information Networking and Security (pp. 15-
18). IEEE Publishing. https://doi.org/10.1109/MINES.2012.106

Choi, H., & Seo, S. C. (2020). Optimization of PBKDF2-HMAC-SHA256 and PBKDF2-HMAC-LSH256 in
CPU environments. In I. You (Ed.), Information Security Applications (pp. 321-333). Springer Cham.
https://doi.org/10.1007/978-3-030-65299-9_24

FIPS PUB 198-1. (2008). Federal Information Processing Standards, The Keyed-Hash Message Authentication
Code (HMAC). Information Technology Laboratory National Institute of Standards and Technology
Gaithersburg. https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.198-1.pdf

FIPS PUB 180-4. (2015). Federal Information Processing Standards, Secure Hash Standard (SHS). Information
Technology Laboratory National Institute of Standards and Technology Gaithersburg. https://nvlpubs.
nist.gov/nistpubs/fips/nist.fips.180-4.pdf

Juliato, M., & Gebotys, C. (2011). FPGA Implementation of an HMAC Processor based on the SHA-2 Family
of Hash Functions. University of Waterloo Technical Report. https://citeseerx.ist.psu.edu/document?repi
d=rep1&type=pdf&doi=5043ce0a65691fd16ff7a546e6c0013d9ee190ca

Jung, S. W., & Jung, S. (2013). HRP: A HMAC-based RFID mutual authentication protocol using PUF. In
The International Conference on Information Networking 2013 (ICOIN) (pp. 578-582). IEEE Publishing.
https://doi.org/10.1109/ICOIN.2013.6496690

Khan, E., El-Kharashi, M. W., Gebali, F., & Abd-El-Barr, M. (2007). Design and performance analysis of a
unified, reconfigurable HMAC-Hash unit. IEEE Transactions on Circuits and Systems-I: Regular Papers,
54(12), 2683-2695. https://doi.org/10.1109/TCSI.2007.910539

Kieu-Do-Nguyen, B., Hoang, T. T., Tsukamoto, A., Suzaki, K., & Pham, C. K. (2022). High-performance
multi-function HMAC-SHA2 FPGA implementation. In 20th IEEE International Interregional NEWCAS
Conference, NEWCAS 2022 (pp. 30-34). IEEE Publishing. https://10.1109/NEWCAS52662.2022.9842174

Lin, L., Chen, K., & Zhong, S. (2017). Enhancing the session security of zen cart based on HMAC-SHA256.
KSII Transactions on Internet and Information Systems, 11(1), 466-483.

44 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

McLoone, M., & McCanny, J. V. (2002). A single-chip IPSec cryptographic processor. In IEEE Workshop on
Signal Processing Systems (pp. 133-138). IEEE Publishing. https://doi.org/10.1109/SIPS.2002.1049698

Michail, H. E., Kakarountas, A. P., Milidonis, A., & Goutis, C. E. (2004). Efficient implementation of the
keyed-hash message authentication code (HMAC) using the SHA-1 hash function. In Proceedings of the
2004 11th IEEE International Conference on Electronics, Circuits and Systems, 2004 (ICECS 2004) (pp.
567-570). IEEE Publishing. https://doi.org/10.1109/ICECS.2004.1399744

Oku, D., Yanagisawa, M., & Togawa, N. (2018). Scan-based side-channel attack against HMAC-256 circuits
based on isolating bit-transition groups using scan signatures. IPSJ Transactions on System LSI Design
Methodology, 11, 16-28. https://doi.org/10.2197/ipsjtsldm.11.16

Pham, H. L., Tran, T. H., Duong Le, V. T., & Nakashima, Y. (2022). A high-efficiency FPGA-based
multimode SHA-2 accelerator. IEEE Access Open Access, 10, 11830-11845. https://doi.org/10.1109/
ACCESS.2022.3146148

Randall, K. N. (1999). ISCA Guide to Cryptography. McGraw-Hill.

Ravilla, D., & Putta, C. S. R. (2015a). Routing using trust-based system with SHA-2 authentication. Procedia
Computer Science Open Access, 46, 1108-1115. https://doi.org/10.1016/j.procs.2015.01.023

Ravilla, D., & Putta, C. S. R. (2015b). Implementation of HMAC-SHA256 algorithm for hybrid routing protocols
in MANETs. In 2015 International Conference on Electronic Design, Computer Networks & Automated
Verification (EDCAV) (pp. 154-159). IEEE Publishing. https://doi.org/10.1109/EDCAV.2015.7060558

Rubayya, R. S., & Resmi, R. (2015). Memory optimization of HMAC/SHA-2 encryption. In 2014 First
International Conference on Computational Systems and Communications (ICCSC) (pp. 282-287). IEEE
Publishing. https://doi.org/10.1109/COMPSC.2014.7032663

Selimis, G., Sklavos, N., & Koufopavlou, O. (2003). VLSI implementation of the keyed-hash message
authentication code for the wireless application protocol. In 10th IEEE International Conference on
Electronics, Circuits and Systems, 2003 (ICECS 2003) (Vol. 1, pp. 24-27). IEEE Publishing. https://doi.
org/10.1109/ICECS.2003.1301967

Stallings, W. (1996). Data & Computer Communications (6th ed.). Prentice Hall.

Wang, M. Y., Su, C. P., Huang, C. T., & Wu, C. W. (2004). An HMAC processor with integrated SHA- 1 and
MD5 algorithm. In ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE
Cat. No. 04EX753) (pp. 456-458). IEEE Publishing. https://doi.org/10.1109/ASPDAC.2004.1337618

Yiakoumis, I., Papadonikolakis, M., Michail, H., Kakarountas, A. P., & Goutis, C. E. (2005). Efficient
small-sized implementation of the Keyed-Hash message authentication code. In EUROCON 2005-The
International Conference on” Computer as a Tool” (Vol. 2, pp. 1875-1878). IEEE Publishing. https://
doi.org/10.1109/EURCON.2005.1630347

